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Gentle Perturbations of the Free Bose Gas. I 
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It is demonstrated that the thermal structure of the noncritical free Bose gas is 
completely described by certain periodic generalized Gaussian stochastic process 
or equivalently by a certain periodic generalized Gaussian random field. Elemen- 
tary properties of this Gaussian stochastic thermal structure are established. 
Gentle perturbations of several types of the free thermal stochastic structure 
are studied. In particular, new models of non-Gaussian thermal structures are 
constructed and a new functional integral representation of the corresponding 
Euclidean-time Green functions is obtained rigorously. 

KEY WORDS: Free Bose gas; W*-KMS structure; periodic generalized 
stochastic process; gentle perturbations; multitime Green functions. 

1. I N T R O D U C T I O N  

A variety of  existence and analyci ty  resu l t s - -as  well as construct ive 
one s - -have  been r igorously ob ta ined  for some realistic models  of non- 
relativistic quan tum mat te r  in thermal  equil ibrium, tl-8) Nevertheless,  a 
number  of  basic quest ions on the origin of  fundamental  macroscopic  quan-  
tum phenomena  such as superconduct ivi ty ,  superfluidity,  etc. t9'1~ are 
lacking r igorous  demons t ra t ion  in the above realistic treatments.  Only for 
mean-field-like and exactly solvable models  has a mathemat ica l ly  well- 
defined analysis of  these phenomena  been performed, tl~-j3) I t  is worthwhile  
to ment ion here the recent act ivi ty on the superconduct ivi ty  p rob lem in 
Fermi mat te r  models  of  physical  interest,  ~14" 15) which is based on the 
r igorous renormal{zation group approach  of  Gal lavot t i  and  co-workers.  (~6~ 

The main  objective of the present  series of  papers  is to construct  a 
class of  models  of  self- interacting nonrelat ivist ic  Bose mat te r  in a thermal  
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equilibrium for which a rigorous discussion of the Bose-Einstein condensa- 
tion, as well as other phase transitions, would be feasible. In order to 
approach this goal, we intend to use extensively methods from the con- 
structive Euclidean QFT. In the first paper of the planned series the 
stochastic content of the fundamental W*-KMS structure of a free, non- 
critical Bose gas tl7) is described. We prove that the Abelian sector of the 
Weyl algebra may be described by a certain generalized periodic stochastic 
process with values in ~ ' (R  d) (the space of the Schwartz distributions) and, 
what is more, that a reconstruction of the whole thermal structure can be 
derived from it (Proposition 2.5 below). A similar situation occurs in the 
case of the critical Bose gas when the underlying process is nonergodic. (~8~ 
Having described a free Bose gas in terms of stochastic processes, one may 
perturb them with multiplicative (-like) functionals, thereby creating some 
new non-Gaussian thermal processes. Furthermore, given such a process, 
one is able to reproduce its W*-KMS counterpart by methods of refs. 17, 
19, and 20. In this article we shall confine ourselves to the simplest case of 
perturbations, which we have called (after ref. 21 ) gentle perturbations of a 
free thermal process. Using standard tools of statistical mechanics, (22) such 
as, for example, the Kirkwood-Salsburg analysis, the correlation inequalities 
of ref. 5, and homogeneous limits, we provide a class of Euclidean invariant 
models of self-interacting Bose matter than can be controlled rigorously, as 
we shall demonstrate in Section 3. 

The unbounded (of polynomial type) perturbations of a free thermal 
structure will be studied in another paper of this series. (~8~ In the critical 
region nonergodicity is preserved under gentle perturbations (cf. the second 
part of ref. 18), but whether this is related to the arising of the Bose 
condensate in an interacting system remains to be resolved. 

The pioneering paper of ref. 21 and refs. 23-25 have provided, among 
others, the major inspirations for our own Euclidean attitude to many- 
boson physics. The methods of classical statistical mechanics have been 
already applied to the study of certain quantum systems in refs. 24, 26, and 
27, and, to some extent, our approach to an interacting Bose gas resembles 
that of these authors. 

2. FREE BOSE GAS(ES). EUCLIDEAN ASPECTS 

The main aim of this section is to point out certain stochastic aspects 
that arise in the Euclidean time of the thermal structure describing systems 
of noninteracting Bose particles in the thermal equilibrium at (inverse) 
temperature f l > 0  and with chemical activity z. Most of the results 
obtained below apply well to the case when the kinetic energy function 
r  of the individual particle is such that: 
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(i) ~/,~ u+ e- ' t(P) is a positive-definite, continuous function of p ~ R a, 
or equivalently: 

(i') {e -'~'~-~v), t~>0} generates a semigroup of positivity-preserving 
operators on L2(Rd). 

The most general form of such functions is given by the Levi-Khintchine 
formula (see, e.g., refs. 28 and 29) 

g ( p ) = a + i b . p + p .  C . p - f  [e ~w'- 1 - i ph (x ) ]  r(dx) (2.1) 

where a is some real constant, b is some vector in Rd; C is some non- 
negative-definite matrix, and r is some nonnegative measure on R a, 
called the Levy measure, such that ~a~ 1 ^ Ixl 2 r(dx)< ~ ,  where x n y = 
min{x, y}; h is the so-called cutoff function with compact support and 
satisfying h(x) = x in some neighborhood of the origin (see, e.g., ref. 28 for 
the role played by the cutoff function h in this scheme). In particular, the 
functions o~(p) = [p[', 0 < 0c ~< 2, or #(p)  = (p2 + m2)1/2 belong to this class. 
The common feature of all such functions is that the corresponding semi- 
groups {e -'~c-iv), t~>0} are generated by stochastic Markov processes 
with stationary independent increments known as Levy processes. (28'29) 

The kernels of the semigroups { e - '~( - ;  v), t ~> 0 }, denoted as ~ ~,~)( x, y), 
have explicit expressions through the corresponding path space integrals. (29) 
This enables us to apply the methods of ref. 1 to reproduce (up to some 
extent) the basic results of refs. 1-4 for interacting gases with nonstandard 
kinetic energy. The corresponding results are reported elsewhere/3~ 

In the present paper we confine ourselves to the following choices: 

�9 8 ( p ) =  p2, called the standard Bose gas. 

�9 ~ ( p ) =  (p2 +m2)1/2, m >10, called the semirelativistic Bose gas. 

In the case of standard Bose gas the corresponding path space integral 
is well known as the Wiener (conditioned) integral and in this case the 
corresponding transition function has a kernel 

1 
ida'(x, y) - (4~t)d/2 e - Ix -  yl2/(4t)l;z (2.2) 

In the case of the semirelativistic Bose gas the corresponding transition 
function has a kernel 

4 f ?  (2.3) ~ 7 ( x ,  y) = - ~  dr ~ ( x  - y) e--t:/4r e l  "3/2-m'r 
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with fast exponential  decay as Ix - Yl ~' oo for m > 0 and in the case m = 0 
equal to the well-known symmetric  Cauchy density: 

c . t  
X ~  Y) - (t 2 + I x -  ylZ) (a+ Jw- (2.4) 

2.1. Global Aspects 

Let #~(h) be the abstract  Weyl algebra built over the one-particle 
space h = L z ( R  a) equipped with the s tandard symplectic form a( f ,  g ) =  
I m ( f  I g ) .  For  a chosen kinetic energy function d~ as above, we define 
the free thermal state c o l  "~) on the algebra ~r 

o ) f , ' ) ( W ( f ) )  = exp -- �89 1 dp If(p)l z ~oa(p) (2.5) 

where 

1 + z e  -/~'~(P~ 

~Po(P) = 1 - ze-P~(P) (2.6) 

0 < f l  is the (inverse) temperature,  z -  e -p~' is the chemical activity, and p 
is the chemical potential. The values of z (corresponding to the noncritical 
regime of the free Bose gas exclusively considered here) are restricted to 

0 = sup ze-P~P) < 1 
p 

which in the case do (p )=p2  or do(p)= [p[ corresponds to O < z < l  (resp. 
117 p > 0) and 0 < z e - a "  < 1 (resp. p > - m )  if m > 0 and do(p) = (p2 + m-)  -. 

Some elementary properties of  the free thermal  kernel C~o(x) are 
collected in the following proposit ion.  

Proposition 2.1.  For  any noncritical value of z the corresponding 
free thermal kernels CPo(X) have the following properties: 

(i) CPo(X)=6(x)+RPo(X), where RPo(x)>O for any x ~ R  e and 
RPo(X) e S(Na) if d~ = p2 or d~ = (p :  + m 2) 1/_, with m > 0. 

(ii) If  d~ = [p[, then CPo(X) = 6(x)  + RPo(X), where Rg(x)  > 0 and 
RoPe Co(R a) n Li(g~ a) n C~ 

Proof. From the assumption supp ze-Pe(P) < 1 we obtain the equality 

d 'g(p)  = 1 + f ig(p)  (2.7) 

where /~g(p)  = 2 E,,~ l z"e -P"~r 



Gentle Perturbations of the Free Bose Gas 879 

From the positive-definiteness of the function p ERa--*e -''t(P) for 
each t > 0 ,  it follows that for each n, exp[ - f lng (p ) ]  is the Fourier 
transform of some positive measure d/~, ~ on R a. Moreover, from the fact 
that e x p - f l n g ( p ) e S ( N  d) in case (i) it follows that dlz~(x)=p~(x)ddx, 
with p~(x)eS(Ra). By elementary arguments it follows that also 
Y.,,~'=l z"exp- f lng(p )~S(Nd)  in case (i); therefore we conclude that all 
assertions of (i) are valid. The conclusions of (ii) follow from the explicit 
form (2.4) of the corresponding kernels and elementary arguments. II 

Let ()f(o, s'20, ZOo) be the corresponding GNS triplet obtained from 
(~(h) ,  CO'oP'S)). Then defining ~~ - no(W(z-~'/Pe"~(P)f)), we 
obtain a a-weakly continuous group of automorphisms of Uo("l/(h))." 
It is well known that the system C o -  " o. = (~o, ~2o, 0c,, Uo(~'(h)) ") forms a 
W*-KMS system in the (inverse) temperature fl (see, e.g., ref. 17). The 
corresponding multitime Green functions of the system Co are given by 

(p.**) o( Go((tl,fL) ..... (t,, ,f,,))--c% (0% r%(W(fl))...c%~ 

= 1-[ [expicr((ti, f~),(tj, fj)) 

xexP- - �89  ~ f j (p)(~g( t i - t j ;  p) dp] (2.8) 

where 

a((t ,  f~), (tj, fj)) = Im<z-"'/%"~'P)f,.lz-"J/Pe'g'P)fj> (2.9) 

. 7 t - i t / f l e i t g ( P )  n t- Z 1 + i t / [ l e - ( f l  + it) N ( P )  

0oP(t; p) = (2.10) 
1 - z e  - P ~ ( P )  

By elementary arguments they can be extended analytically to the 
holomorphic functions Go(((1, f l  ) ..... ((,,, f,,)) of 

( = (El ..... ~,,) • Tfl 

- { ( " = ( ( ~  ..... ( , , ) e C " l - - . I m ( i < I m ( i + l  < --. ,  

rt--] t (Im (i+ l - Im (,) < fl 
i = l  

and continuous on T~. The restrictions of the analytically continued Green 
functions to the so-called Euclidean region 

E ~ -  {ze C" l Re zi-- 0; - f l /2  ~< Im z, ~< ... ~<Imzi~<Im z~+l ~< ... ~<p/2} 
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will be called Euclidean Green functions of the free Bose gas and their full 
collection extended to 0,1>o ~ ( h ) •  by linearity will be denoted by eG~ 
The following abbreviations will be used: 

E, a'+ = {(S,,..., S, ) �9  (2.11) 

S k -= (S],..., S~) �9 Eg (2.12) 

W k - ( W, k ..... W~) �9 "W(h) • (2.13) 

E 0 EG~ =-- Gw,,....wk(S, ..... Sk) (2.14) 

fk = (f ,  ..... fk) �9 L2(Ra) • (2.15) 

E 0 EG~ -- G(f,.....fk)(Sl ..... Sk) 

= EG~wII])...." w(1k~)(S, ..... $1,) (2.16) 

Sk* = ( - - S k  ..... - S ] )  for S k � 9  k (2.17) 

+ W~-) for W k = ( W ,  ..... WE) w k ' - - ( W k  ,..., (2.18) 

(W", S") -- (( W,, S,) ..... ( W,,, S,,)) (2.19) 

Proposi t ion 2.2. Let 

E EG~ { Gwt.....wk(S, ..... Sk)] W;�9 ~r (S, ..... Sk)eE~} 

be the collection of the Euclidean Green functions of the free Bose gas 
in the noncritical regime. Then the collection eG~ has the following 
properties: 

EG(1) (i) For each fixed w k � 9  ~r215 the map 

E,a~ S k _.+ eG~ k) 

is continuous. 

(ii) For each fixed SkeE~ the map 

~r ~k ~ W k ~ ~G%(S k) 

is multilinear and for any fk �9215 the map 

L2(Ra) • fk ~ F.GOk(sk ) 

is continuous and obeys the estimate leGfk(Sk)l <~ 1. 
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(iii) Fo r  any S h e  E ~  and any S ~ [ - i l l 2 ,  fl/2] such that  Sk + S <~ fl/2 
the Euclidean Green functions are locally shift invariant,  i.e., for any 
W k ~ Yr ~* 

~ w , , ~  + S)  = ~(7%(S*) 

where S* + S =  (S~ + S,..., S k + S ) .  

For  any W k ~ W'(h) • any Sk: 31 .<;.<k- I S; = S;+ 1 we have the (iv) 
equality 

where 

(v) 
holds 

(vi) 

EG(2)  

where 

EG(3) 

with 

with 

EGOk(sk ) = E ~ o ,  ~ ,  

W ~ i ) = ( W l , . . .  , ~ 'Vi_ 1, W i . ~Zi+ I . . . . .  ~l/rk) 

S~i) = (SI ..... Si, S~+ 2 ..... S , )  

For  any W k E W'(h) • 31 ~<t~k: W~= 1 the following equality 

eGOw,(S~- ) eGO r S k - l~  ~-- lowk-l~(i) ) 

( i ) w f k - l ) = ( W l  ..... W i _  1 , W i + l  ..... W k )  

, ) s ( k - l ) - - (  S1 ..... S~_1, S~+ ~ ..... S , )  

EG~ = 1. 

(OS-posit ivi ty) .  For  any terminating sequences 

W = ( W  ~  j ..... Wk,...), S=(S~ 

S e ~ E ,  a" + for all k = 1, 2 .... 

e~o '~*'* Sq>~0 t J w k *  ' Wl~,O 
k,I 

For  any terminating sequences 

W = (W ~ W 1 . ,  Wk,...), S = (S O ..... Sk,...) 

(2.20) 

S k~Ea,  '+ for all k = l , 2  .... 
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and for any f e L2( R a) 

~eGOk.., f;y.w,(Sk.. ,O,O, S t ) < ~ ~ e ~ o  ~ek.* e,, (2.21) 
_ ~wk. wt~"2 , ~ ) 

k , l  k , I  

EG(4) (Weak form of the KMS condition). Let 

wo...., w,(Sl ..... - S~ - S , , -  S , )  = G wo, w~...., w, , ..... 

for O<~Sl<~ .. .  <~S,<~. Then for each n, W"+ 1 e'//:(h) • 

~ o  ~,,~_~r~_o w,, , ( ~ - S , , , f l - S , , + S ,  ~ - S , , + S , , _ ~  (2.22) �9 . J w n + l ~  1 - -  ' ~  W n ,  I, Vo . . . . . .  , . . . ,  

EG(5) (Euclidean invariance and uniqueness of the vacuum). 
Under the natural action r l , .a  I of the Euclidean group of motions E(d) on 
the Weyl algebra W(h) the Euclidean Green functions are: 

(i) Invariant. 

(ii) Have the cluster decomposition property, i.e., for any 

Wk e ~r • ' W/6 ,~r ~/, Sk e E l ,  S teE~  

we have 

E 

lim 
lal  ~ 

0 k G~t,.olWk.w,(S , S I) = eG~ EGwt(Sl) (2.23) 

Proof. Let us consider the free gas GNS W*-KMS structure 
Co=(]fo,  I2o, CC~ By the Araki theorem ~31) the Euclidean 
Green functions are represented as 

E~O~w,,,_r = ( f2o l c r 1 7 6  --- c~~ f2o) (2.24) 

and by the very definition of Co 

COr W ( f )  ) = ( g2o, rCo( W ( f )  ) f2o) (2.25) 

Now everything follows easily from (2.24) and the Araki theorem. In 
particular the OS positivity EG(2) follows from the fact that the 1.h.s. of 
(2.20) can be written as 

I k = l  

( ~  ~I ~x~ (2.26) 
Ik = I 
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The weak form of the KMS condition, formulated as EG(4), can be 
observed easily from the explicit formula (2.8) for the corresponding Green 
functions. I 

Remarks. As demonstrated in ref. 20, the multitime Euclidean 
Green functions of any C*- (or W*-) KMS structure obey similar 
properties EG(1)-EG(4) with the obvious modifications of the continuity 
properties EG(2)(ii) and EG(3). It can be checked using the basic results 
of refs. 1-4 that the Euclidean Green functions of dilute Bose gases (and 
also of dilute Fermi gases built over the CAR algebra over h) in the regime 
considered by Ginibre ~1) obey the system EG(1 )-EG(5). The detailed study 
of the modular structures that arise (see below) are now under investiga- 
tion. The Euclidean Green functions of the critical Bose gas also obey 
properties similar to EG(1)-EG(5i) and their restrictions to the Abelian 
sector (of the Weyl algebra) fulfill also EG(6) (see below). 

The complex subalgebra ~r of ~V'(h) generated by the elements 
W ( f )  with f =  f will be called an Abelian sector of ~/'(h) and the corre- 
sponding free Euclidean Green functions restricted to d ( h )  will be denoted 
by eAG o. For --fl/2 <~s I <~ ... <~s,<~fl/2 we have 

eAGo((S], f l )  ..... (S., f . ) )  = ]--[ exp 1 fi - s S o ( s j - s  i, f~ |  f . )  (2.27) 
1 <~i<~j<~n 

where 

f,.| f.) = f ~ g(s, p)  f , ( p )  f A P )  dp (2.28) sg(s ,  

zS / f ie - - s~ f (p)  .~_ Z I --s/ f i  e - - ( f i - -  s)r 

~g(s, p)  - 1 -- ze -fi,~(r) (2.29) 

The periodic extension of ~oP(S, p) to the whole R shall be denoted by the 
same symbol. The fundamental properties of the free thermal kernels 
SPo(S, x) are collected in the following proposition. 

Proposition 2.3. 1. Let ~o p be the free thermal kernel (2.29) with 
dO(p) = p2 or g ( p ) =  ( p E w  m2) 1/2, m > 0. Then for any 0 ~< s ~< fl, and z non- 
critical, we have: 

(i) O < S f l ( s , . ) e S ( R  a) i f s e (0 ,  fl). 

(ii) Sg(0, . )=Sg(f l ,  . ) =  Cg(.) in ~ ' (R  a) sense. 

2. Let g ( p )  = Ip l ;  then for any 0 ~< s ~< fl, 0 < z < 1, we have: 

(i) 0 < SPo(s, . ) e LI(R a) n C0(R d) n C~ a) if s �9 (0, fl). 

(ii) Sg(0, . ) =  Sg(fl, . ) =  C0P(.) in ~ ' (R  a) sense. 

822 '80/3-4-25 
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3. For  g(p)=p2 or g(p)=(pZ+m2)m, m~>0, the kernel So p is 
stochastically positive on the space L2(KpxRd), i.e., for any 
g l ,  g2 E L2(K/~); f l  ..... fn ~ L2(Rd), C1 ..... C, ~ C, we have 

~, C.-C-~pSg(g~| gp| (2.30) 

where 

Sg(g|174 f')=So ds I~ ds' g(s) g'(s') I dx ; dy 

x f ( x )  f '(y) SPo(lS-S'l, x -  y) (2.31) 

4. For  g(p)=p2 or g(p)=(p2+m2)I/~, m>~0, the kernel Sg  is OS 
positive on the circle Kp, i.e., for any t l ,..., t ,  in [0, fl/2], f l  ,-.., f ,  ~ L~(Rd), 
C 1 ,..., C n ~ C ,  w e  have 

Proof. 

where 

?~cp f dx I dy SPo(t. + tp[f~| fp) >1 0 (2.32) 
a, f l  

From the assumption supp ze-P~'(P) < 1 it follows that 

~g(s, p) = y" F~(s, p) (2.33) 
n>~0 

P,(s, p) -- zn+S/Pe -(pn+~)8(p) + z ~ + t -~/Pe-(P(" + ~)- ~)~(P) (2.34) 

So, if g ( p ) = p 2  or g(p)=(p2+m2)~/2, m > 0 ,  then P,(s,p)~S(R a) for 
each n >i 1 and n = 0 if s ~ (0, fl). In this case also ~oo> 1 z" exp[ -flng(p)] 
S(gU). Taking into account  that 

A ( ) 
Sg(s, p) = ~ z"e -a"s(p) (zS/Pe-~'r(P) + z I-~/pe-(p-~)ecp)) 

n ~ O  

it follows that also SPo(S, p) ~ S(R a) if s ~ (0, fl). Moreover,  SPo(s, x) > 0 for 
any x ~ Ra. 

Similarly, if g ( p )  = IP[, then we have 

~g(s, p)= ( ~  zne-Bnlpll(Zs/Pe-slpl--}-zl--s/fle-(B-s) lpl ) (2.35) 
n>~O 
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Therefore from the continuity of the Fourier transform and (2.4) we obtain 

znc 
Sg(s, x ) =  F, (f12n2+ ix12)d+,/2 

n>~0 

( zs]13 C Z I -- s/P c ) 

• (sZ+ Ixl2)a+~a -~ (/~-s)=+ Ixl=)a+'a 

= E zn+s/P C 
,,>~0 [ (~ n + s)z + lxl2] ~+'/= 

+ Z Zn+]-s/# C 
,>io {[ f l (n+ l)+s]2+lxlZ}a+]/2 (2.36) 

The above series are uniformly convergent on R a and define a continuous 
function with decay at least as 1/(s2+lx[2) a+~/2 for IxlToo, which is 
integrable provided s > 0. 

Although claims 3 and 4 follow easily from a basic characterization 
theorem of KL (32) we present simple proofs for the reader's convenience. 
Expanding into the Fourier series the periodic function ~P(s, p) we obtain: 

SP(s, p ) =  Y' {[fl(p +g(p) ) ]2+(2nn)2}  - '  2 f lE#f l+g(p)]  
n~Z 
x ( 1 - e-Pt~' + ~(p)])( 1 - ze -P~(P)) - i ei2,,,/p (2.37) 

Because all the Fourier coefficients in the expansion (2.37) are positive, the 
stochastic positivity (2.30) follows. The OS positivity of the one-time 
Euclidean Green function is a general feature of all KMS systems, as 
demonstrated in ref. 19. The straightforward proof of 4 is as follows. Let 

Co = (~o,  no,  no, 0t,~ rro(~(h))") 

be the basic GNS W*-KMS system of the free Bose gas. Then we can write 

2 

Z c.caSg(s.+salf~| Y.c.~176 
a,.B a 

>/0 I (2.38) 

R e m a r k s .  1. Let hg be a nonnegative, self-adjoint generator of 
unitary group U~ z-"/Pe-it~(p) acting in the space h = L2(R d) and let dP ~ 
be the corresponding spectral measure of hg. Then, defining the covariance 
operator 

Fpo(s) - f :  d ~  (e_Sa + e_,p_s)~) (2.39) 
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acting in h by definition 

( f ,  Fg g) = gg(slf | g) (2.40) 

we see that the kernel Sg(slf| belongs to the class of kernels con- 
sidered in ref. 32. 

2. Let us observe that the periodic kernels "Sp(s, p)=_F,(s, p) for 
each n also have the positivity properties stated in points 3 and 4 of 
Proposition 2.3. This leads to an interesting decomposition of the free 
thermal process G ~ defined below as a sum of independent OS-positive 
Gaussian processes ~o.., which have covariances equal to "Sp(s, p). This 
decomposition might be eventually used to develop a rigorous renormalisa- 
tion group analysis of interacting Boses gases. 

Proposition 2.4. The collection rAG 0 of the Euclidean Green 
functions of the free Bose gas in the noncritical regime obeys the properties 
EG(1)-EG(5) of Proposition 2.2 and additionally: 

EG(6) (Stochastic positivity). For any 

Sk e E l ,  * k k . f =( f , , ' " , f k )  f ~ = f ~ L 2 ( R a )  

we have 

ErgO ~ k Ll fk ,  f l {S  , S I) ~ 0 (2.41) 
k,! 

Proof From assertion 3 of Proposition 2.3 it follows by standard 
construction (see, e.g., refs. 28 and 32) that there exists a Gaussian process 
(~~ p indexed by L2(R a) with mean zero and the covariance given by 
Sg(r, x). The r.h.s, of (2.41) can be rewritten in terms of (~o) as 

I i 0 2 
Ik=l 

Having defined a system of Euclidean multitime Green functions with 
the properties listed in Proposition 2.2, we can apply the constructions of 
ref. 20 to build certain W*-KMS structures. The interesting aspect of the 
proposition below is that the system of Euclidean Green functions of the 
free Bose gas restricted to sO(h) already contains all information of the free 
Bose gas. 

Proposition 2.5. Let r  o r  oa(p)=(p2+m2) 1/2, m>~O, and 
let z be noncritical. Then: 
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1. There exists a unique (up to a unitary equivalence) W*-KMS 
system eC = (e~Po, et2o, e~o, emo ) and a bounded *-representation eg o of 
~//'(h) such that: 

(i) e~o('#:(h))  _ e m  o. 

(ii) The multitime Euclidean Green functions of eCo restricted to 
er~o("/Cr(h)) coincide with eG o. 

(iii) We have 

em o = W*{ e~~ W ( f , ) ) ) . . .  ca,~ (Otto( W(f,,)))} 

2. There exists a unique (up to a unitary equivalence) W*-KMS 
system AC = ( a % ,  At2o, Aeo, Amo ) and a bounded *-representation Ag O of 
~'(h) such that: 

(i) Ano(d(h))__q Am o. 

(ii) The multitime Euclidean Green functions of the system AC o 
restricted to Ar~o(~'(h)) coincide with AG o. 

(iii) We have 

amo = w , { A  o A a o A ~t , (g0(W,))  " ' '  ~t,( ~o(W,,))} 

for Wl ..... W,, ~ ~r 

3. Both systems EC o and AC o are unitarly equivalent to the GNS 
W*-KMS system Co = (~Po, t2o, ~o, ~o(./r 

Proof. Stop #. In the first step we apply in a sketchy way a general 
construction of ref. 20 (see also ref. 19), to which we refer for more details. 
Because in both cases the constructions of eC o and AC o are identical, we 
restrict ourselves to the construction of eC o only. 

Let ~'P be the free complex vector space built over the set 
{I W" s'q Is" ~ E~' + } Then we divide V'P by the natural relations arising 
from the properties EG(1)(i), EG(1)(iv), EG(1)(v), and EG(1)(vi), 
obtaining a complex vector space V p. The sesquilinear form 

--- ~ g= dp e~_o , .... u w .... wkptS ,S kp) (2.42) 
=,]i' 

defined on V p is nonnegative by EG(2). The corresponding Hilbert space 
will be denoted by eaCeo and the corresponding classes of abstraction will be 
denoted by square brackets [.  ]. 
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Lifting the natural action er~ o of ~/'(h) on ~'~, defined by 

E~o( w) (  _w", s") - (( w,  _w'); (0, s"))  

to the space EWo, we obtain a *-representation of "/r in EWo which is 
bounded because of EG(3). 

Lifting the local shift transformation given by EG( 1 )(iii) into the space 
EW o, we obtain a uniquely determined self-adjoint generator EH o. Defining 
Et2o = [(1, 0)] ~ EWo, we have that for any [(W", s")] ~ EWo, 

E 0 E E 0 E 0%( n o ( W , ) ) . . -  ~ , , , ( ~ o ( W , , ) )  EOo=[(W"_ ,.s")] 

Moreover, the vector-valued maps 

f i e  o e E P, + ~ s " 
k = l  

can be holomorphically extended to the tube T~ being continuous on the 
boundary aTe.  In particular, it can be proved <2~ that the vector Es o is 
cyclic and separating for the W*-closure Em o of the *-algebra generated by 
all products: 

E 0 %,(ErCO(W,)) E o �9 . .  ~ , . ( W , ) )  

where tl ..... t, ~ •; W 1 ..... W,, ~ ~/r Thus we have sketched the construc- 
tion and the proof that eCo=(EWo, Es %c~ emo) forms a W*-KMS 
system. The Euclidean Green functions of the system EC o are equal to EG O 
by the very construction. Let E C ~ = ( E ~ ,  E , .  e,0,;  /2 o, em~) be another 
W*-KMS system whose Euclidean Green function coincides with eG o and 
such that Emo= En~('/C/'(h)) for some 

En'O ~ Rep*(~V'(h), L( g~r ) 

Em, ~ W . { e  o,. E o, e ,  = ~,,  t E ~ ( W ~ ) )  . . .  ~ , ,  ( ~ o ( W , , ) ) }  

Then the isometry 

j:EOE EO E ~t,( ~o( WO) .. . %.( ~o( W,,)) Et2o 
E ~ o , ( E ~ ( W , )  ) E o, E , ,  ~ , �9 .. % . ( r c o ~ m ~ ) )  ~ o  

can be extended to a unitary operator such that j ES'2o=EE2~; 
eao = j --, Eo~O,j; Em, ~ = j emo j -  1. 

S t e p  2. In the second step we identify the W*-KMS system EC o 
with Co. Although this identification follows from Section V of ref. 20, we 
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present a straightforward proof below. To start with, let us define a linear 
space 9 e  generated by 

{ ~ o  ~ e o ~ e~  ,, f. c%.( no(W(f, ,))) . . .  ~, , , ( l ro(W(f,)))  s~ o s ~E~  '+, ~L2(Ra) | 

From step 1 we know that ~ e =  e~o and for any f " ~  L2(R a) • the map 

E#,,'+ ~s  "--, T -  f i  %d,,(W(f,)) eg2 o 
i = l  

can be uniquely extended to a holomorphic, vector-valued function on the 
tube T~ and this extension gives also the holomorphic extension of the 
corresponding Green function. 

Computing the r.h.s, of 

E 0 g E 0 E otis.( 7ro(W(fl))). . .  0ti~,(Zro(W(f~))) ef2o, 

E 0 E 0 E E 0 E ~ , ( W ( f ) )  ~,,,( no(W(gl ) ) ) ""  o~,,,( go(W(gm)))g~2o) 

= G~ - iT , )  ..... (f~, --i t , ) ;  (f, t), (gl ,  is1) ..... (g,,, is,,)) (2.43) 

with the help of the formula (2.8) and comparing it with 

( Ecti~ - - �9 Eo~O~,(EZro( W(f l  ))) Es 

W[ z-'t/Pe"~(P)f] �9 Ea~ eTro( W(g,)))  . . . Ea~ Es (2.44) 

we conclude that 

Ea~ eTro( W ( f )  ) ) = eno( W(zi'/aei'~ f )  ) (2.45) 

on a dense domain .~e and thus on e ~  o. 
Defining a map 

E 0 E E 0 E JE: 0~,,.( no(W(f , ) ) ) " "  o%,( rro(W(fl))) EI20 

-o ~~ (no( W(f,,))). .- ~~ f2 o e ~o (2.46) 

we obtain a densely defined map with a dense range isometry from E ~  o to 
Ygo which extends naturally to a unitary map jz .  From (2.45) we have 

�9 E 0 ' - - I  0 JE O~tJE =Or't, jEEQo=~'20, Emo=JE1ZCo(W(h))"JE 

Stop 3. In the third step we identify the W*-KMS system AC 0 with 
Co. The following lemrna, whose proof is translated into the fourth step 
below, plays a basic role. 
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L e m m a  2.6. Let g ( p ) = p 2  o r  d~(p)=(p2+m2) U2, m>~O. Then the 
set of functions 

V= {e 'r(P)f(p) l t  e ~; f = f eL2(Rd)} 

is R-linearly dense in L2(Rd). 

It is because the Euclidean Green functions restricted to the Abelian 
sector ~r of "/r obey the properties EG(1)-EG(4) that we can apply 
the construction presented in step I obtaining again a W*-KMS system 
"4Co=('4~o, "412o, %t~ amo), where am o is the W*-algebra generated by 
the operators 

ao~O(Ago(W(fl)) ) ,4 o a �9 .. or  

where "4g o is the corresponding representation of ~r in L(a~o) and all 
fi are real. From the cyclicity of "412o under the action of "4m o it follows that 
the set of vectors 

A 0 A A 0 A 0%( go(W(fl))) . . .  Oil. (go (W(f . ) ) )  "4g2o 

is linearly dense in a~o. Defining a map 

A 0 A .4 0 ,4 J,4: cr go(W(fl ) ) )""  oft.( go(W(f.))) '4f2o 

--* or176 r~o( W( f l ) ) ) " " or176 ( go( W( f . )  ) ) t2 o 

( (  )) n O W a~=l eit"l~'fa ~'~0 

x 1--1 exp{ --ia(e"~mf~,; e 'hTa)} (2.47) 
I<~<fl~n 

we see that it is an isometry with dense range because of Lemma 2.6. 
Moreover, j,4 ('4t2o) = 12 o. 

Computing 

(J,4 ~ "4cr176 J * )  f i  go(W(e-i's*"~'fk"I2o 
I = I  k = l  

= f i  r f i  r176 (2.48) 
1 = I  k = l  

we obtain 

J,4 "4or176 j *  = or176 (2.49) 
I k = l  
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Therefore applying Lemma 2.6 again, we conclude that 

ja(`4mo) j *  = no(~/'(h)) " (2.50) 

Let us observe also that the map 

-+ I I  exp{ ia(eitj'f~, ei"nfp) 

X I - [ A  0 A et.( no(W(f~))) (2.51) 
o~ 

can be extended to representation of the full Weyl algebra "/r in L('4Yfo) 
and moreover the obtained representation extends "4rc~. For this, let us 
observe that 

= l-[ exp{ia(e"~h~f~,e"~f/J)} 1-[ ̀ 4cc,~ 
I ~ o t  < / i ' ~ <  n y 

= I - [  exp{ia(e''f~,e"a'~'fa)} J;'(I-Io~~ 

: j ~ ' ( n o ( W ( ~ e ' " f ~ , ) ) ) j ` 4  (2.52, 

by using (2.49), and the fact that no is a representation of ~r From 
Lemma 2.6 we know that for any g ~ L~(~a) there exists a sequence 

(t 7 ..... t•.), (fT,..., f:.)eL2(Ra) 
such that Zk exp{it~ hf'} f~ -'+ g in L2(R a) sense. 

Because no is an L2(R a) continuous representation of ~r it follows 
that the limit 

limo j~'(Z~o(W(~e"~h~f~)))J`4 

exists in the weak sense, and therefore we conclude that also 

- ~ tx / J  c( o~ lira I-I exp{w(exp(ttk.h ) f ~., exp(it~ h~) fl.)} 

,4 0 `4 xl-- [ oq,,( rro(W(f,,)))=`4~(W(g)) (2.53) 
y 



892 Gielerak and Olkiewicz 

exists in the weak sense. Now it is easy to check that a~ as defined in (2.53) 
is really a *-bounded representation of ~ ( h )  in L(A~o) and such that 
AT~ol.~,/(h ) ~- A ~  0.  I 

Step 4. Proof of  Lemma 2.6. The operator e ;''~ acts as 
e , a f = ( e , p ' f )  v, where ^ and v denote the Fourier transform and its 
inverse. Let us take gE C~(Ra); which is a dense subspace in L2(Ra). Let 

1 1 
g~(p) = ~  [ g ( p ) +  g ( - p ) ]  and g2(P) = ~  [ g ( P ) -  g ( - P ) ]  

be Hermitian parts of g. Because g, is the Fourier transform of a real- 
valued function, we may write 

g(P) - fk(P) e"kP2 - fk(P) e"~P'- -- gt(P) 
k = l  k = l  

= ig2(p)-  i ~ fk(P) sin(tkp 2) (2.54) 
k =  1 L 2 

so it is enough to show that for every e > 0 there exist real-valued functions 
f l  ..... f,,~L2(g~ a) and tl ..... t , ~ R  such that 

g2 (P) -  ~ fk(p) sin(tkp 2) <e (2.55) 
k =  I L 2 

Let B denote a ball in •d of radius c > 0 such that supp g(p) c B. Let 
fk(P) = ak(p) g2(P), where ak(p) ~ Co(~ d) c~ L2(R d) and ak(p) = ak(p) = 
ak(Ip[). It is clear thatfk(p) is Hermitian and belongs to L2(~d). Then 

g2(P) -  ~ f , (P)s in( tkp  2) L2 
k = l  

~< IIgEIIo~ 1 - ~ ak(p) sin(tkp 2) (2.56) 
k = l  L2(8) 

Let us deform the constant function 1 to a function f oe  C(B) such that 
fo(p)>~O V,~8, fo(O) =0,  and ILl --foLIL21B)<e, fo(P)=fo(P')  if IPl = IP'[' 
Then 

1 -  ~ ak(p)sin(tkp 2) L21m 
k = l  

<~eq-fl(B) 1/2 sup Ifo(IPl)-- ~ ak(IPl) sin(/kp2)l 
Ipl �9 ro. c] /,- = 1 

where fl(B) is the Lebesque measure of the ball B. 

(2.57) 
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We consider a real algebra generated by Y'.~.= ~ ak(lPl)sin(tk Ipt 2) on 
(0, c]. It is clear that sin(t [pl 2) separates points in (0, c] and for every 
Ipl ~ (0, c] there exists t ~ R such that sin t Ipl 2:~ 0. Because we may choose 
a(p) such that suB= 1, our algebra separates points and nowhere vanishes 
in (0, c]. Thus, applying the Stone-Weierstrass theorem to Co(0, c], we 
have that 

sup I fo( lp l ) -  ~. ak(lP[) sin(tk IPl2)l <e  
[ p l  E ( 0 ,  c ]  k = 1 

for some aj ..... a,, and t~ ..... t,,. Finally, 

-- ~ fk(P) sin(t~-P 2) ~< [[g2[I o~ (1 +p(B) u2) gz(P) 
k = l  L 2 

which proves the assertion for g(p)=p2.  The same proof works for 
g(p)=(p2  +m2)U2, m>~O. | 

To exploit the stochastic positivity EG(6) of the system AeG and for 
the further development we shall introduce two basic concepts of the 
generalized thermal process and the generalized thermal random field. 

It should be emphasized that these concepts are heavily inspired by 
the abstract theory developed by Klein and Landau ~25) (see also ref. 32). 

Def in i t ion  2.7. Any generalized, periodic (with the period #) 
stochastic process (~ t ) ,~  with values in ~'(~'~) will be called a thermal 
process (with the temperature fl) iff: 

Tp(1) The process (~,),~R is symmetric on K a, i.e., 

V-a/2 ~r ~a/-, Vf~lR~)(~r, f )  = (~-~,  f )  (in law) (2.58) 

Tp(2) The process (~ , ) ,~  is (locally) homogeneous, i.e., 

V ..... xp V f ~ ( ~ + ~ , f ) = ( ~ , f )  (in law) (2.59) 
r + s < ~ f l / 2  

Tp(3) The process (~,),~R is OS-positive on Kp, i.e., for any bounded 
F~ Cb(R"), any r" ~ [0, fl/2 ] • ", f "  ~ ~( R u) ~ ", 

O<~EF((~_~7, f~ ) ..... ( r  ~, f, ,)  ) F((r f, ,)  ..... ( r  f , ,))  (2.60) 

Tp(4) The 'moments 

(0, ) E exp(i(~, ,  f i ) )  = ~(~) t .  r,) (2.61) 
- -  , J f l , . . . ,  f n ~  1 ~ . . . ,  

i 

are continuous in r"E (Kp) • and on ~(  R a) • 
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A thermal process ~ is called Euclidean invariant if additionally: 

Tp(5) The moments (2.61) are invariant under the action of the 
Euclidean group E(d) in ~(Rd). 

A thermal process ( ~ , ) , ~  is called tempered iff the moments (2.61) are 
continuous on S(R a)• Lp-continuous iff the moments (2.61) are con- 
tinuous on LP(R a) • etc. 

If (~,), is a generalized thermal process, then its corresponding path 
space measure construction leads to the concept of the random generalized 
field. 

Definition 2.8. Any generalized random field pP on ~ ' ( K p x  R d) 
[i.e., any probabilistic, Bore1 cylindric (PBC) measure] wi11 be called a 
generalized thermal random field iff: 

T f ( l )  We have 

Vg~c~trp)(~; r ( g |  = ( r  g |  f )  (in law/l p) (2.62) 
f ~ -@( R a) 

where r(g |  f ) (r ,  x) = g ( - z )  f (x) .  

Tf(2) We have 

Vg~ c~r,~(~b; t ~ ( g Q f ) )  = <~; g |  (in law/~ p) (2.63) 
f ~  ~(~a)  

for any s > 0  such that supp tag ) ~_ [ - fl/2, fl/2 ], where L( g )( r ) = g( t + s ). 

Tf(3) The field /~a is OS-positive on the circle Ks, i.e., for any 
bounded cylindric function F based on ( g l |  ..... g,,| where 
gi~ C~ [  0, ,8/2] for all i , f , . ~ ( R d ) ,  we have 

o ~<~P(RF(<~b, g, |  > ..... <~, g .  | 1 6 3  

x F((~b, g , |  ..... <~b. g,, |  

where 

Tf(4) 
unique limits in LP(dl 1 P) sense lim~ 10 (~b, ~ | f ) ,  for any mollifier 6~--* 63] 
exist and moreover the moments 

(2.64) 

RF((  q~, g, |  ..... (~b, gn |  

= F(<~b, rgl |  ..... (~, rg,,|  (2.65) 

For any r~Kp  the random elements (~b, f i r |  [defined as 

/1 ~ exp(i(~b, ~ , |  -- ~f,.....f.~,, 

are continuous in r" ~ K~" ;  f f  ~ ~ (~u)  • % 

..... %) (2.66) 
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Tf(5)  A generalized random thermal field/1 is Euclidean invariant iff 
the moments  G (u) are invariant under the natural  action of E (d )  in ~(Rd).  

Additionally. A generalized random thermal field/~ will be called 
tempered iff the moments  (2.66) are tempered distributions, LP-continuous 
iff the moments  (2.66) are LP-continuous, etc. 

Proposition 2.9.  I. Let (~,), be a tempered thermal process with 
the temperature ~. There exists a unique (up to the unitary equivalence) 
W*-KMS structure 

C ~ = (J/gr162 cc,r ~r .~r ~ L(~f~),  m ~) 

where 

m e = W* - { 0~,(rrr W ( f l ) ) ) . . .  0~,(~rr W(f,,)))} 

with f , .= f , .~S(gU)  real, whose Euclidean Green functions restricted to 
nr coincide with the moments  G~....(rl ..... r,,), i.e., for any 
--fl/2~<r]~< .-. <~r,,<<.fl/2, 

(g2r ~r162 W ( f , )  ) ) . . . a~r162 [2 r 

= . . . . .  

= Ee ~< r f~ > . . .  e ~< r ~"> (2.67) 

2. Let p be a tempered thermal field (at the temperature fl). There 
exists a unique (tip to a unitary equivalence) W * - K M S  structure 

C(U)= (~vg~,), t'2<u); ~ ) ;  z~(~)~ H o m � 9  ( A ( S ( ~ a ) ) ,  L(~,a(m)); m~U)) 

where 

re 'u )=  W* - { e~,f'~(z~'"'( W(fl))) . . -oLr,  u,'(z~'u~( W(f,)))}  

tl ..... t , r  f l  ..... f,, ~ S(Ra); f i = f ,  �9 

whose Euclidean Green function restricted to rc(U)(~c(S(Na))) coincides 
with Gu.,.....(rl ..... 3,). 

3. If the tempered random thermal field p is the path space measure 
of a tempered process (~,),, i.e., if 

E exp( i (~ , , ,  f l  ) ) " "  e x p ( i ( ~ , ,  f~ )  ) 

= l . t ( e x p ( i ( q ~ , ~ r s | 1 7 4  (2.68) 

for all rl ..... r,, ~Kp; fl,.--, f , ,~  S(Ra), then the W * - K M S  systems C ~r and 
C ~u) coincide. 
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Proof. Let (~,), be a given tempered thermal process at the tem- 
perature f l>0 .  It follows from Definition 2.7 that the moments 
GA (r tr  r , )  define on the Abelian sector ~(s(Rd)) of the Weyl 

..... f , ~  1 , ' " ,  

algebra ~/:(S(gU)) a system of functions fulfilling EG(1)-EG(6)  with 
possible lack of EG(5)(ii) and with modified EG(1)(ii): 

EG(1)(ii)'. The functionals 

G(r .(~ ..... ~,): S(Ra),,,,~ r r ~,__.,c:(o ~ z,,) 
. ,  .... ~ ~.J l , ' " ,  J n !  v f l , . . . ,  f n ~  1 ,  " " ~  

are continuous and G {r (z z,)l ~< 1. f t , . . . , f n  I , ' " ,  

Also, EG(3) should be properly modified. All these modifications, 
however, do not affect seriously the construction presented in step 1 of 
Proposition 2.5. Proceeding analogously to step 1 of Proposition 2.5, we 
can construct C r Similarly we prove the existence of C". The identification 
of C r and C u follows from 2.69 and the uniqueness part of 1 and 2. | 

It follows from the results of ref. 32, stochastic positivity EG(6), and 
Proposition 2.5 that the thermal structure of the free Bose gas can be 
described fully in terms of the corresponding stochastic thermal structures. 

Propos i t i on  2.10. Let ~'(p) be given by (2.1) and let 0 < z  be such 
that supp z exp{- f ig (p )}  < 1. Then for any fl > 0: 

1. There exists a unique (up to a stochastic equivalence) Gaussian 
thermal process o ( ~ , ) , ~  with values in ~ ' (R  a) such that 

E(~,~ E((~~176 g))=Sg( l t - t ' [ , f |  (2.69) 

The process o (~,),~u is Euclidean invariant, ergodic, and LE-continuous. 

2. There exists a unique (up to a stochastic equivalence) Gaussian 
generalized thermal random field/~o p such that 

~g((O~, f ) )  = 0 
(2.70) 

/~oP((r 6~ |  (~b, ~ . f ) )  = SoP(lz - z'], f |  g) 

The thermal field #o p is Euclidean invariant, ergodic, and LZ-continuous. 

3. The generalized random field kto # can be identified with the path 
space measure of the process (~~ i.e., for any bounded, cylindric func- 
tion F with base (zl, f ;)  ..... (z.,  f . )  

EF(<~,,f;> ..... ( ~ . ,  f,,>) 

=#g(F((q~, 6~,| ..... (qb, 6~.| (2.71) 
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4. Let vg be a Gaussian measure on ~ ' (R  d) with mean zero and the 
covariance given by 

vg(< q~, f > <  ~p, g>) = Ca(f  | (2.72) 

Then the measure v0 p is the unique stationary measure of the process 
0 (~,),~a and v0 p is equal to the restriction of/z0P to the a-algebra at ~ = 0, i.e., 

P = Vo p, where /1o1~(o) 

27(0) = a{ <r 6 o |  f e f e ~ ( R a ) }  

Moreover, the measure vg is quasiinvariant under the translations by 

Remarks. Other well-known examples of generalized thermal pro- 
cesses arise in the study of two-dimensional models of Euclidean (quantum) 
field theory t23' 33) and also in the context of the Euclidean version of the 
Bisognano-Wichman theorem, t33'34) Similar stochastic thermal structures 
on the Abelian sectors of the corresponding algebras of observables also 
appear in the context of (an)harmonic lattice crystals t2t'26,27) and certain 
spin systems, t24' 35) 

The common problem of all these examples is to construct a modular 
structure on whole algebra of observables from arising stochastic thermal 
structures on the Abelian sector. In the case of the free Bose gas the 
complete solution of this problem is given by Proposition 2.5. 

From the assumption supp [zexp{-fl~(p)}[ < 1 it follows that the 
operator ( 1 - z exp { - fie(p) } ) - 1 exists in L2(Rd) and is bounded, strictly 
positive, and self-adjoint. Let hP(R d) be the metric completion of the space 
~(~d) equipped with the inner product 

( f  g> = f f(x)(1 -ze-P~r(P)) -1 ( x - y )  g(y)dxdy (2.73) 

From the simple estimates 

IIflIz.2(R~) ~ Ilflla~< (inf(1 --ze-Pr -1 IIflIL2(R~) (2.74) 
p 

it follows that h p. is essentially equal t o  L 2 ( R d ) .  Using the Z2(Rd)-con- 
tinuity of the process ~o and estimates (2.74), we can define a version (0 
of ~o obtained by extension of the index space ~(R d) onto the space h p. 
The new process (o is indexed by Kp x hP(Rd). For any Borel subset I c  Kp 
we denote by Z'(I) the smallest a-algebra generated by { ( ( o , f ) l t ~ J ,  
fehP(Rd)}.  For any t, seKp we will denote by [t,s] the closed interval 
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from t to s in the counterclockwise direction. The corresponding condi- 
tional expectations with respect to the a-algebras L'[t, s] [•(J)] will be 
denoted by E~,., 1 (resp. E j~ 

Proposition 2.11. 1. For any allowed form of g(p), z such that 
Ize-ZCP~l < I the corresponding free thermal process ~o has two-sided 
Markov property on Kp in the sense that 

E~176176176 ~176 (2.75) 

2. Let 3(J)  = a{~b(t, f )  lt ~ J, f ~  h a} be the corresponding a-algebras 
in B(~'(Kp• Rd)) and let ~o( j )  denote the corresponding conditional 
expectation values. Then the free thermal random field St o p has the following 
two-sided Markov property on Ka: 

- - E  "~ E '~ (2.76) 

Proos It follows easily that the operator h~'=h0+/. t l  is a non- 
negative self-adjoint operator in h p [on the same domain as in L2(Rd)]. 
Moreover, the covariance operator FPo(t) of the process ~o indexed by 
Kp x hff is given by 

FPo(t) = e-th~ + e- (P-  ') t,~ (2.77) 

Applying Theorem 4.1 of ref. 32, we conclude the proof of the first part. 
The second part follows easily by identification of ~b(t, x) with ~,(x) given 
in Proposition 2.10 and the density of ~ (R a) in the space h~(Ra). II 

2.2. Local aspects [ the  case 8 ( p ) = p 2 ]  

Let A c 0~ d be a bounded region with a boundary OA of a class at least 
Cl-piecewise. Then, for any be C(OA) the self-adjoint extension - A  S of 
the symmetric operator - A  defined on C~(A) can be constructed. It is 
well known that the arising semigroup {exp( - tAS ,  t~>0} is positivity- 
preserving on L2(A); therefore there exists a stationary Markov process 
M](t) with independent increments, with values in .,~ for which the kernel 
K~A. b) of exp(--t /IS) plays the role of the transition function. 

Let "/C a be the local Weyl algebra built over the space L2(A) and let 
~//-F be its Fock-space realization in the Fock-Bose space F_~(Lz(A)). In 
particular, we have 

WF(f)=exp{i[a~(f)+aA(f)]}  = exp[iq~a(f)] (2.78) 

where aA and a + are standard annihilation and creation operators in 
F_I(L2(A)). 
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Let P(A'b)(d)~) be the spectral measure for the operator --Aba. Then, 
we can defme the finite-volume thermal state o9C0 A' b) on ~//'~ by the formula 

CO(oa, b ) ( W r ( f ) ) = e x p  X p -- ~Co, ~A.b)(f) (2.79) 

where 

Co ~, (a, b,(f) -- ( f [ C ~  ~a, b)(f)) L~,A) 

I + ze-#~ 
~'g,(a, b)(f) = f P(A'b)(d2) 1 --ze -p'~ 

(2.80) 

(2.81) 

It is well known (see, e.g., ref. 17) that for any monotonic sequence (A.) .  
of bounded regions in ~d and with sufficiently regular boundaries OA. 
tending to R d by inclusion and for any sequence baA" ~ C(OA.) we have the 
weak convergence 

lim ~flO,(An.b.j=Cg if Ze(0, 1) 
n ~ o o  

The corresponding GNS construction applied to ("/CAF(';CO(0A'b)) leads 
again to the W*-KMS system 

and the corresponding Green functions can again be easily computed and 
the analycity properties similar to those of Go established. In particular, the 
corresponding Euclidean Green functions ZGo(A, bo.) again fulfill the 
system of axioms EG(1)-EG(4) and EG(6); therefore the whole discussion 
from Section 2.1 can be repeated with obvious modifications. 

Lemma 2.12. Let z = e  -#~' be sufficiently small and let (A.) be a 
monotonic sequence of bounded convex regions in gU with boundaries OA,, 
of class at least C 3 and with mean curvatures uniformly bounded. Then for 
any choice of b,,e C(OA,,), any f l  ..... fm e LdA) ,  s ' ~  TP. we have the con- 
vergence 

lim 
n ~ o ~  

EGo(A .,  b,,)((s,, fl),..., (s,,, fm)) 

='~G~ f l )  ..... (s.., f . . ))  (2.82) 

Proof. The monotonicity in the boundary conditions: 
If bl(x) ~b2(x) for all xEOA, then 

(A,b,) ~K~A, b2)(X, K, (x, y) y) (2.83) 

822/80/3-4-26 
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for all x, y ~ A, t > 0. Therefore 

sup I~t,A'b)(x, y)--~,(X,  Y)I-----I-'~Ct, a'0)( x, y)--~,(X, Y)I (2.84) 
b �9 C(aA) 

for all t,x, y e A ,  where ~r<,a,o) is the kernel of the semigroup 
{exp( - t A~)(x, y), t >_- 0}, where ZJA u corresponds to the Neumann boundary 
condition. By the (rough) estimate of ref. 36, we have with our assumptions 
on (A,,) 

I..~C~a"'b~ y)--~,(X, Y)I 

<~ Cea,t-d/2 exp { _c  ( d(x, AC.)2 + d( y, A~.)2) ~ 
4t j j  (2.85) 

for all x, y ~ A, t E R, where C, c, and 2 >1 0 are some constants. 
It is due to the quasifree nature of the states oJ0 A" b) that it is enough 

to consider the one-time Green function only, 

[EG~ A., b.)( (O, f ~), (s~, .1"2)) - eG~ f,) ,  (s~, f2))[ 

~< lexp(ia(ft, e i*'''~a'" b"~f2))l 

x ISg(s, I f=|  exp{i[a(fl, ei*d~f2)- a(fl,  eis'h*f2) ] } 

• Sg(s,, fl | (2.86) 

It is well known that 

l~rn exp[it(--a6aA " +/~ 1)] = exp[it( - -a +/1 1)] 

strongly in L2(Ra); therefore we shall omit the symplectic factor in the last 
formula, concentrating attention on 

I"~"'b"~sg(slf, | f2) - Sg(slf, |  

<~ ~ z"+aa l dxdy f ,(x)  f2(Y) ~eqa.,b.)t..~o ~ao+s) '~, y)_~(a,,+~)(x ' Y)I 
n>~0 

+ ~, z"+'-~/Pfdxdyfx(x)  f2(y) 
n>~O 

. ~ ( A . ,  b.) . • (p(. + 1)_.)ix, Y)-:~(pc.+l)-.)(x, Y)I (2.87) 

Therefore localizing first f~, f2 and taking into account (2.85), we obtain 

lim (a"'b")SPo(s, f t  |  Sg(slf~ | fz) (2.88) 

provided e-PUea < 1. I 
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Remarks. The restriction e-PUea < 1 is no doubt only an artifact of 
the rough estimate (2.85) used. It is natural to expect that actually this 
lemma is valid for all 0 < z < 1. For a Dirichlet boundary condition the 
constant 2 can be taken to be equal to zero and this gives the result of the 
independence of the limiting Green functions of the Dirichlet boundary 
condition in the full noncritical interval z e (0, 1 ). 

The finite-volume, conditional thermal processes (resp. thermal random 
fields) will be denoted by ~I A' baA) (resp./zto "l" baA)). 

Having established properties EG(1)-EG(4) of the corresponding 
Euclidean Green functions eG(o A'baA) (resp. AEGt0A'ba~)), we can construct 
again three different a priori W*-KMS structures: eC(o A' baA), e,~CtoA, baA), and 
the basic GNS system C~o A" boA). It appears that all the claims of a properly 
modified Proposition 2.5 are still valid and the proof is almost identical, 
with the exception of Lemma 2.6, which is replaced by Lemma 2.13. 

Let A be a bounded, open, and connected region in R d, d>~2, with a 
smooth boundary. Let us define - - A ~ ( f ) = - - A f  for f eC2(A) ,  where 
~(--A~) consists of those f ~  L2(A) which satisfy the following: 

(a) f e C 2 ( A )  

(b) O"f(x) = b(x) f (x)  for x e OA 

with 0" being the normal inward derivative. It follows that - A  b for 
b ~ C](OA) is densely defined, symmetric, and strongly positive. Let/~b be 
the Friedrichs extension of --Aba to a self-adjoint operator. Then, as is well 
known (see, e.g., ref. 37) the spectrum of a self-adjoint L b is purely discrete 
and all eigenfunctions of L ~ are real-valued. Moreover, the semigroup 
exp( - tL~)  is of trace class. 

It is well known (see, e.g., ref. 37) that - / ~  possesses real-valued 
eigenfunctions {uk}  associated with eigenvalues 0 > 2 ]  ~ )~2 ~ " ' '  " 

u ~ form a complete set in L2(A). Moreover, { k}k=, 

kemma 2.13. A linear space generated by functions [exp(it]Sb)] f, 
where t~ R and f = f ,  feL2(A) ,  is dense in L2(A). 

Proof. It is enough to show that for every 

f =  ~, ZkUk, zkeC 
k = l  

there exist to, tl ,..., t,, E R, fo = fo, f~ = f]  ..... f , ,  = f , ,  from Lz(f2) such that 

f =  ~ [exp(itys fy 
j = 0  
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We exploit the fact that exp(it/~ b) = ~-~.~~ i [exp(it2~)] Pk, where Pk is the 
one-dimensional projector onto Uk. 

Let zk=ak+ibk ,  ak, bk~R. Let us define to=0 ,  f o = ~ . = l a k U k ,  
m = 2n, tj = -- tj +,  for j = 1,..., n and 

Then 

{ l u, f o r , : ,  ..... . 
f J =  1 b,_,. 

- ~  2j_,---~ u j_ ,  for j = n + l , . . . , m  

2, ~ , " bj [exp(itjs ) _  exp(-- i t js  Uj ~. [exp(itjl~b)] fJ = akuk + $ jZ  
. = ~jj" j = O  k =  1 1 

but 

exp(itjs b) - exp( - itjL b) = 2i ~, (sin tj2k) Pk 
k = l  

So by putting tj= (n/2)(1/2j) we obtain that 

2n 

[exp(itjs176 ] f j =  ~ akuk+i ~ b, uj= ~ zku k | 
j = 0  k = l  j = l  k = l  

In the sequel we shall need also the following Feynman-Kac  formulas: 

P r o p o s i t i o n  2.14. Let 8(p)  = p2, and let 0 < z < 1. 

1. For a n y f = f ~ L z ( A  ), b~C+(cOA) 

Trr_ I(L2(A)) ei~Acf)F_ t(e-a( '~ +~ 1A)) 

Tr r_,(L'-(m)( F_ l ( e-P(n] + u 1A)) ) 
= o9~o A, b)(Wr(f)) = Ee i<r 

= lt~o a, b)(ei< r Jo| ) (2.89) 

2. For any --fl/2 <<. rl <~ ... <~ r,, <fl/2, f l =  f l  ..... f , ,= f , ,~Lz(A)  

Trr_,(L2(a))(otl~.b)(Exo(WF(ft)) ) E~(A.b)r t " '"  ~'iT. ~ "'o~ W F ( f n ) ) ) )  F-l(e-a('~+i'l't)) 
Trr_,(L,(a))(F_l(e-P('t~ +ul))) 

(/0, ,) = E exp(i(~(a' b) . . ,  , f , )  

(/0, ) =p~o A 'b)  exp(i(~b, 6,, | f , .))  (2.90) 
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3. For any sequence (A,,, boA~) as in Lemma 2.12, any --fl/2<~ t <~ 
<~ r,, <<. ill2, f,  ..... f ,  ~ L E( R a) real and sufficiently small z, the limits 

lim E exp(i ,.. b.,), 
m ~ o o  

resp. lira II~A"b~ ~ exp(i(~, ~ , |  
m ~  

exist and are equal to 

E (  f i  exp(i(~~ f l ) ) )  
\ 1 =  1 

resp./lg exp(i(~b, 6~, |  

3. GENTLE P E R T U R B A T I O N S  OF THE FREE BOSE GAS: 
T H E R M O D Y N A M I C  L I M I T S  ON THE A B E L I A N  SECTOR 

We shall 
perturbations 
perturbations: 

rzlP'~~ Z-]  exp WA((~,) IZtoa'U)(dq~) A , e  W - -  A 

where the interactions W~(~b~) will be of the following form: 

(LGP) The local gentle perturbations 

W](~,)=2 f dp(a) f: dv fA: e'=~'(~'X): dx 

where 

study the thermodynamic limits of the multiplicative-like 
of the free thermal field /z(0 p't') given by the following 

O~ 2 

:e '~'~a ~' "):= exp -~- S.#(O, x) exp ia~b~(v, x) 

(3.1) 

(3.2) 

dp is a complex, bounded measure with a compact support and such that 
dp(~)=dp(-~); q~,(r,x)=(~*X~)(r,x), where (X,),>0 is a positive 
mollifier, i.e., 0 ~<2'~ ~ C,~.(Ra), with support of size smaller than e and such 
that ja X,(x)dx = 1; 2 is the strength of the perturbation. 
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( n L G P )  Thee nonlocal gentle perturbations 

W~at(~b,)=A ~: dr f dp(~)dp(a ') 

where 2, dp, r are as in the local case, and the kernel V is chosen to be 
an L 1 integrable function. 

I . emma 3.1. For both choices (LGP) and (nLGP) the thermo- 
dynamic stability bound 

ZA = I  d/l~~ WA(~b~) ~<exp C. IAI (3.4) 

holds, where C is some constant depending on the details of the perturba- 
tions. 

Proof. We shall consider only the case (nLGP). By simple Gaussian 
calculations we obtain 

= 2" ~: dzl: f dp(a)7 f dp(a')'; fa dx]'~ ~A dyl7 

• f l  V(xi--yi) exp - 1  ~ ocio~jSfl~('ci--'cj, x i -x j )  
i = l  i , j = l  

• exp ~ ~" ' ' P --- Otio~)St(Ti--Tj, Yi-- Yj) 
i , j ~  1 
i ~ j  

x e x p - � 8 9  , p aio~) S , ( r i -  rj, x i -  yj) 
i , j =  1 

Using the positive-definitness of S ~, we can estimate 

I d~~ w~(4'~)" 

= I).[" fl"(Var p)2,, exp(2nS](0)) [I VII'; [A]" 

(3.5) 

(3.6) 
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which shows the bound (3.4) with 

c =  121 fl(Var p)2 exp(2Sff(0)) II Vl[~ (3.7) 

Moreover, it follows that ZA are entire functions of the coupling constant 
2EC. I 

. ( f l , ,u )  The characteristic functionals of the perturbed measures ~ . , .  can be 
written in the following forms: 

(LGP) ease: 

A , ~  ~ ] 

1Sg(g|  ~ ~.. &l'~fdp(cOl'~ = e x p  - 

n ~ O  

x f dxl"~ f i  [exp{ -ioq(gQf) �9 S#(Tfi, Xi) } - -  1] pA,~(r, x)~ (3.8) 
i = l  

where 

pA.Av, 0qx)l~=2" f dp~A")(~) f i  :e'~'*'(r"x'): (3.9) 
1 = 1  

( n L G P )  ease: 

] l ( f l ,  P)[  o i (  q ~, g |  f )  ) 
A , e  \ ~  

1 ; ; f  = e x p - ~ l s g ( g | 1 7 4  ,,~o ~ drl7 dp(oOI7 

I = 1  

x f i  [exp{ --io~,(g| �9 S~(r,, x,)--fl,(g| * S~} - 1] 
i = l  

x aA, ~(r, (0~, X)l', (fl, Y)7) (3.10) 

where 

o'A.~(zT, (0q x)'/, (fl, Y)T)= 2"#~ p'~') :ei~'r162 :eiP'*'(~" Y'): 
I = 1  I = 1  

(3.11) 

Employing the integration by parts formula, we obtain the following 
equalities: 
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(LGP)  

Pa. ~(r, x)'; = 2" exp -- ~ S ~('[" I - -  { i l x  I -- x,) ocio q 
i = 2  

• :exp[i~162 (2 f:Sdr fAdx f dp( ~ ) ( fi_ 
x [exp{ -ocal S~(r,  - r; Xl - x)} - 1 ] 

:exp[i~r x)] :  } )  (3.12) 

where 

f : f  f l e~'s''~'x' C ~, --- sup dr d IAI (4) dx - I I 
0t' 

�9 . = sup{ oc 2 e supp dX} 

(nLGP) 
~,~((~, o~, x)~, (r, p, y)'i) 

= 2 " e x p -  ~ OClOCiSff(rl-rilXl-Xi) 
i=2  

x e x p -  ~ fllfl,S~(al-a,I Y l - Y , )  
i = 2  

x tt(fl.~,) ( ~ :exp[ iOClCe(Ti, XI)]" I~I :exp[ ifllCe(~71, y/)]: I'*A,~ 
' ,1=2 1=2 

x [exp{-0c0q S~(rl - z, x~ - x)} exp{-flfl~ Sff(rl - z, Yl - -  Y ) }  - -  1 ] 

x :exp[ a r  x)] :  V(x- y):exp[ i/~r y) ] :  } )  (3.13) 

in which after a convergent expansion in powers of 2 we recognize the 
well-known ~2z~ Kirkwood-Salsburg-like equalities that hold between the 
correlation functions. A straightforward application of the contraction map 
principlC 2z~ or the methods of the dual pairs of Banach spaces 13s) leads to 
the proof of the following proposition in the (LGP)  case. 

Proposi t ion 3.2 (LGP). 1. For [,~l <2o(LGP) ,  where 

2o(LGP) =exp(-0c2, S,(0, 0 ) -  1) C/, - ]  (3.14) 
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the unique thermodynamic limits 

lim pA.~(r,~z,x)7=p~(r, oq x)~ 
A TR a 

exist in the sense of locally uniform convergence. The limiting correlation 
functions p,(z, ~, x)]' are continuous, translationally invariant, and have the 
cluster decomposition property. Moreover, they are analytic functions in 2 
for IAI <2o(LGP). 

2. Let 

,l~ {-I:- '  r ar n {1=1 <~} 

where K is the corresponding infinite-volume KS-operator, and ae(K) is 
the spectrum of K in the corresponding Banach space B e (compare refs. 38 
and 39). 

Then for any such 2 the unique thermodynamic limits 

p~(r, ~, X)'l' = lim PA. ,(r, ~, x)' i 
A TR a 

exist in the sense of locally uniform convergence and are analytic functions 
in 2. 

As a simple corollary we obtain: 

Proposition 3.3 (LGP).  1. For 2 e C  as described in point 1 or 
2 of Proposition 3.2 the weak limit d/z~ of the measure dpA p,, exists and the 
limiting measure dlz~ is periodic in fl, symmetric on Kp, and OS-positive on 
Kp. Moreover, d/~, a is (weakly) analytic in the 2 perturbation of the free 
measure dpg. 

2. For 121 <20(LGP) the limiting measure dp~ is translationally 
invariant with respect to the translations of •d and is ergodic under the 
action of this group. 

3. For 2 as in part 1 the characteristic functional of d/z~ is given by 

~(e ~(~ g |  1 p~ �9 - - ~ S g ( g | 1 7 4  

x Y. ~ ap(oOa~dxl'; 
n / > 0  

• f i  [exp{ -oc~S~ �9 (gQf)(r t ,  x/)} - 1] 
/ = 1  

x p~(r, ~, x)' i (3.15) 
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A minor modification of the original analysis of the Kirkwood- 
Salsburg identities enables us to control also the thermodynamic limits for 
a nonlocal gentle perturbation (3.3). 

Proposition 3.4 (nLGP). Let W = ( n G L P ) .  

1. For 2 e C :  121 <20(nLGP),  where 

2o(nLGP) = exp( -2cc 2 S,(0, 0) - 1 )(C~ I) -1 

C :  ' = s u p ( d r f d [ 2 1 ( ~ )  d[2l(~ ' )  
Y, 7'  o o 

x f dx ; dy V(x- y) e-~rs'(r'X)e-~'/s'(r'Y}-- ll 

~, = sup{~ e supp d2} 

limdp~',~=d/l~ exists and the limiting measure dp~ is periodic in fl, 
symmetric on Kp, and OS-positive on Kp. Moreover, dp~ is (weakly) 
analytic in the 2 perturbation of the free measure. The measure d/l~ is E(d) 
invariant and ergodic under the translations by R a. The characteristic 
functional of dp~ is given by 

Fll_i(~.gl~f)h = e x p -  1 C~o(g| f I g| f)  

~ ~;  ~ x ~ ~ ,  x ~,~, fi ~:-x,~ 
n>---O n .  i =  1 

x f i  [exp( -ot,S~ �9 (g| x,)) 
i = l  

xexp( -o~S , '  P,(g| x;))' - 1 ]  

x a2((r, x, ~)7; (r', x', o()7) (3.16) 

where 

a2((r,  x, o~)~; ; (T', x',  r  

- - l i m a  (I-I:ei~'r f i  ) ATRaI'tA.~. - :ea;~a~;, x;): 
i = l  

(/0 ) ~ ].l~ :eieXir :e i~;~(r~ 'x[ ) :  

l i = l  
(3.17) 
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In particular, we have obtained the following functional integral 
representation of the corresponding multitime Euclidean Green functions 
corresponding to the infinite-volume limit perturbations of the free Bose 
gas in the noncritical regime. 

T h e o r e m  3.5. Let V a = ( L G P )  or VA=(nLGP) and 2~C be 
restricted as in part 1 of Proposition 3.4 or part 2 of Proposition 3.2 in the 
(LGP) case. Then the Euclidean multitime Green functions on ag(h) are 
given by the following functional integrals: 

~o),,.... i .(~, ..... ~.) 

= lim ec:~. A r ~ S , )  
- -  V f l  ,..., fn~ '3" l  ~ . . .~  

A T oo 

=fo fl 
( L G P )  E 0 

= G y l , . . . , f , , ( S  1 , . . . ,  S , , )  

x ~ ~.w d(r, x, ~)~' exp -oc, S~ �9 c~e,| A ( x , ) -  1 
n > ~ 0  " i = 1  / 1 

x p~((r, x, ~)7) 

S 1 ~...~ O" n 

x k i I  v x,-xi  
n > ~ O  i ~ I  

[ ( ) ( ) ] x e x p - S f f ,  ,~ae , |  ( x ) - - o c ' S ~ ,  ,~  c~e,| ~ (x ' ) - - I  

(70, ) 2 �9 i , t . x/zA, , :exp ioclq~,(rt, x/): -:exp tml~b~(rj, xl). (3.18) 

Some properties of the system that are elementary albeit fundamental 
for the purposes of the present paper are collected in the following 
proposition: 

P r o p o s i t i o n  3.6.  Let l eG~ ~ s jq,....y,,~ ~ ..... <*,,)} be a collection of the 
Euclidean multitime infinite-volume Green functions constructed in 
Theorem 3.5. Then they can be extended by continuity to the Abelian 
sector at(h) of the Weyl algebra ~//'(h), and the continued Green functions 
denoted by the same symbol obey properties EG(1)-EG(5)(i). 
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Corollary 3.7. Let I2[<2o(LGP) [for the case (LPG)]  and 
12] <20(nLGP) [for the case (nLGP)] .  Then the following perturbation 
expansions are convergent: 

..... s , , ) }  

= ~ . . .  dz dx dp(cx)['; 
n 0 x R d • R 

x exp(r 3s,| :exp[icq r xt)]" ; . ; .  (3.19) 

where ( . ;  �9 �9 - ) o p' r denote the truncated expectation values with respect to 
the free gas measure d/~0 p. 

For a class of gentle perturbations of the free Bose gas stochastic 
structure another variety of existence results can be established using the 
methods of refs. 5 and 40. For this let us assume now that our perturba- 
tions are of the following forms: 

(LGP) ,  WA(r 

but now dp is an even bounded real measure, ). >/0, or 

(nLGP) e WA(~b,) = (3.3) 

where dp is also an even bounded real measure and V s  L~(R a) is assumed 
to be pointwise nonnegative, i.e., V(x)>>, 0 and 2 >t 0. 

Proposition 3.8. Let tibia, , be a locally perturbed free Bose gas 
measure by (LGP) ,  or (nLGP)~ and let 2 > 0. Then the following correla- 
tion inequalities of the Fr6hlich-Park type are valid: 

1. ZA~ ,.,A,. >1 ZAI " Za  2 (3.20) 

2. ( $ 2 ( g |  :cosc~$,: ( r , x ) )  x'rA,,~<0 (3.21) 

3. e'*<g| :cos ~i~b,: (~i, xi) <~ 0 (3.22) 
i = l  / A . e  

( fI ,7 4. eiC~(g| :COS ~i~,: (r;, xi >I 0 (3.23) 
i = l  I A ,  n 

5. cos oc,~b,(s,, x;) 1--[ cos flj$,(tj, yj) >>. 0 (3.24) 
j A,e 

Proof. Basically the same as in ref. 5, employing the duplicate 
variable trick and elementary trigonometric identities. 1 



Gentle Perturbations of the Free Bose Gas 911 

T h e o r e m  3.9. Let us consider perturbation (LGP)~ or (nLGP)~ of 
the free Bose gas thermal field dp0 p. 

For any 2 ~> 0 the unique thermodynamic limit 

lim / z ~ , ( f i  exp(i(~k, ~ , |  
ATRd " i=1 

-- 2 ( , 0 1  ) =/1, exp(i(r 6~, | f,.) ) 

=eG~,.....f,,(Sl ..... s,) for --fl/2<<.s,<~ .. .  <~s,,~fl/2 (3.25) 

and the limiting Green functions obey all the properties exists 
EG(1)-EG(5)(i). 

2. In particular the following estimates hold: 

d2 f )  ~_~o o (a) S 2 ( f | 1 7 4  ~ do~2 F'G2, g, a2g(f,, 
1 

SPo(f | gl f |  g) (3.26) 

(b) p : ( e x p S f : d z f ( r )  f d x g ( x ) q b ( r , x ) )  

S 2 
~< exp Re -~- sg(f | g I f |  g) (3.27) 

S~' ( ;0,  ) (c) P(f l |  - ~ | g,)=/~, (r f,.| 

~< a(n !)la f i  [SoP(fi@ g, lf,.| g,)l (3.28) 
i~ l  

Proof. From the correlation inequality (3.23) it follows that 
paa(egt(f| ) monotonously increases in the volume and that for real t, 
paa(e'~f| g)) decreases as A T Rd- This leads to the statement that the unique 

_ 2 ((r174 g) limit lim A p A (eCrU" f | g)) = /J o~ ( e ) exists and obeys the estimate (3.27). 
Then the estimates (3.28) follow by the application of the Cauchy integral 
formula and the analycity in ( ~ ( ( ~ ' f |  of/~ o~ (e ). Although the estimate ( 3.26 ) 
follows from (3.28~, its independent proof follows easily from the correlation 
inequality (3.21), which says that/,~(~b, f |  g)2 is monotonously decreasing 
in the volume. 

Integrating by parts on the functional space ~'(Kp x R d) with respect 
to the measure d/z~(r we obtain 
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E 2 __ E 0 
G,~,:,,....:,(Sl ,..., s,) o-~vo G~:z.".f,(sl '"" s,) 

X ~ x Kh'• R k ~ O  

i = l  j = l  

(/O1) xp~ :exp[ i~:$~( D, x:)l: (3.29) 

From the correlation inequality (3.24) it follows that 

) I~ : coso~i4),(~i, xi): -=C~(oq, ri, x~l'~) (3.30) 

monotonously increase in the volume A and because they are uniformly 
bounded 

IC~(~,, x,17)l ~<exp lfl2nCfle(O) (3.31) 

the unique thermodynamic limit lima C~A-C x exists pointwise on 
(K# x Rd) | From this, the existence of pointwise limits 

liana I.Z~ :ei~,/r x:): =p~ :ei~JO,(~j..,~j): (3.32) 

follows in the same way as demonstrated in ref. 40 by the application of 
another correlation inequality (originally due to Pfister (4~)) not listed in 
Proposition 3.8 but formulated in ref. 40 in a similar context. Finally, the 
proven pointwise convergence is sharpened to the local uniform one by a 
standard application of the Mayer-Montroll identities (see, e.g., ref. 38). 
From the obtained convergence the following expression for the infinite- 
volume Euclidean Green functions eG~,...,f.(s~,..., s,) follows easily from 
(3.29): 

~qC,,. . . ,: .(s,  ..... ~ . )  = ~c~. . . . , : . (~ ,  ..... ~ . )  

• Z ~. dr ax d2(o~)l~ 
k>~O " # x ~ a •  

i = l  j = l  

( / 0 , )  x p ~  :exp[i~i~,(r;, x,)]: (3.33) 

The case of nLGP~ is analyzed in a similar way. | 
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R e m a r k s .  The existence and uniqueness of the thermodynamic 
limits for the Euclidean Green functions eG}t,...,s,(s 1 ..... s,) follow easily 
from the correlation inequality (3.23) and the uniform bound 

leG~,,....~(s~ ..... s,)l ~< 1 (3.34) 

Using methods based on the analysis of the corresponding Kirkwood- 
Salsburg identities, one can study the gentle perturbations of the local, free, 
conditioned thermal fields described in Section 2.2. 

For this goal let us consider a perturbation of the free, conditioned 
[by boa E C(OA)] thermal field/1~o a'b~ of the form 

/7(x'beA)(atn) - ~ - l t t "  ~exp WA(CI)e)dlt(on'b~ (3.35) 

where 

2a,,(baA) =p~oA'b~ W.4) (3.36) 

and WA(~,) is given by (3.2) or (3.3). 

T h e o r e m  3.10. Let (A~) be any arbitrary net of bounded subsets 
of R a with the boundaries of class at least C3-piecewise. Additionally we 
shall require that the mean curvature of OA= is uniformly bounded in e. Let 
(b;A~) be a sequence of continuous boundary conditions. 

Then for 121 < 20(LGP), if W A = LGP [respectively I,ll < 2o(nLGP), if 
WA = n L G P ]  the unique thermodynamic limit 

lim a ~a, bo~= _ ,~ 
/'~ A,  ~ ~ / ' ~  

= 

~ 2  A exists in the sense of weak convergence and moreover/~, =/~,. 

Proof. The method of the dual pair of Banach spaces as explained in 
ref. 38 and applied in a similar situation in refs. 39 and 40 is applied. | 

Remark .  The method of refs. 38--40 gives the existence and inde- 
pendence on the classical boundary conditions of the limiting thermal field 
p2 in a larger set of 2 (see also point 2 in Proposition 3.3). 

As a corollary we have the following result: 

C o r o l l a r y  3.11. Let (A=)=, (boa=)= be as in Theorem 3.10 and let 
AGx(A=, boA,) be the system of the Euclidean Green functions correspond- 
ing to the gentle perturbations of the local, conditioned, free W*-KMS 
structure restricted to the Abelian sector s~C(hA) of ~K(hA). Then for 2 as 
in Theorem 3.10 and 0 < z < 1 sufficiently small the unique thermodynamic 
limits of the corresponding Euclidean Green functions exist and are equal 
to those obtained in Theorems 3.5 and 3.9. 
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All the systems of limiting Euclidean Green functions constructed in 
this section obey properties EG(1)-EG(5)(i)  and correspond to some 
generalized thermal processes, 

Therefore the general reconstruction procedure of ref. 20 applies (see 
Proposition 2.9), leading to certain W*-KMS structures. Further analysis 
of the derived W*-KMS structures is contained in forthcoming papers. 

4. C O N C L U D I N G  R E M A R K S  

4.1. For the finite-volume perturbations of the free thermal field 
p~o p" ~') the corresponding nonhomogeneous process (~ I,x. a)), ~ m has the two- 
sided Markov property on Kp in the sense of Proposition 2.11. The inter- 
esting and important question is whether the homogeneous limit A T Rd 
preserves the above Markov property. For a gentle perturbation of a class 
of lattice anharmonic crystals some results on the preservation of the two- 
sided Markov property in the thermodynamic limit have been established 
in ref. 42. A constructive route for the verification of the two-sided Markov 
property will be formulated below. 

4.2. The notion of DLR equations for the gentle perturbations of the 
Abelian sector of the free Bose gas in the Euclidean region can be intro- 
duced. For this goal, let us denote by FI(A c) the orthogonal projector [in 
the space ~'f~ao-m.c.(C(Kp)xD(~d); S0a)] onto the subspace ~',f~ao(AC)-- 
m.c.(C(Kp) x C~(Ac); Sao), for A c R d open and bounded. 

The free thermal kernel S 0 a is then decomposed as 

SPo = aCSg + aCHg (4.1) 

where 

aCSao-Saoo(1 - / / ( A  c)); ACFlPo=SaooFl(AC) (4.2) 

A C Let Po be a Gaussian random field with the covariance given by ACSP o. It 
is clear that the symmetry and OS positivity on K s of the free conditioned 

A c A c Gaussian random field Po is preserved and moreover/ t  o ~ p o  a weakly as 
AT Ra. 

Let L'~ c) be the (/t~ a-algebra generated by the random 
elements of the form ( q ~ , f ) ,  where f~ao(AC).  Then the conditional 
expectation values of the measure a0 a with respect to the a-algebra ~r~ 
are given by 

Ej, o{FI L'~ c) } (~ )  = i~C(F(. + I I % ( ~ ) )  (4.3) 



Gentle Perturbations of the Free Bose Gas 915 

for/.t0-a.e. ~ue N'(Kp x Ra), where 

< H*c(Tt), f>  = < ~g, HAc(f)> (4.4) 

The corresponding conditional expectation values of the perturbed measure 
are 

EuA.,{FIX~ (~) 

ltgC(F( �9 + II* c( ~)  ) exp WA(. + H* c( ~g) ) 
- ( 4 . 5 )  

AC ,u o (exp Wa(" +H*c(W))  

for #o-a.e. ~ue ~'(Kp • Ra). 
In analogy to ref. 27 (see also refs. 43 and 44) we define a classical 

thermal Gibbs measure corresponding to the gentle perturbation of  the free 
Bose gas as any probabilistic, cylindric Borel measure /~ on ~'(Kp • •a) 
such that 

lloE~A.,{X(AC)} =/J (DLR) 

for any open, bounded A c R u. 
It is evident that any solution of (DLR) defines a thermal random field 

in the sense of Definition 2.8. Some results about the uniqueness of the 
solutions of (DLR) generalizing slightly Theorem 3.10 shall be reported 
elsewhere (see also refs. 39 and 40). 

The introduced concept of the classical thermal Gibbs measure will be 
of particular interest in the case of polynomial perturbations where several 
solutions of the corresponding (DLR) equations may exist. (18) 

Using the (DLR) equation, the constructive approach to the problem 
of preservation of the two-sided Markov property on the circle Kp for the 
limiting thermal random f ie ld/~ can be formulated. The idea is to show 
that for p~-a.e. ~ge~'(R d) the limit 

lim Eu~.,{F]X~ s ]CxAC)} (g  t) 
A TR a 

(where X([t, s] C x A c) is the a-algebra generated by the random elements 
<~, g |  with g supported on the segment [t, s] c and f supported 
in A c) exists and is equal (/z,a-a.e.) to the conditional expectation value 

el  2:({ t, (7,) 

Details of the proof that indeed, for small values of 121, this is true will 
be reported elsewhere, c18) 

822/80/3-4-27 



916 Gielerak and Olkiewicz 

4.3. For a bounded A c R d the theory of bounded perturbations of 
the KMS structures (see, e.g., ref. 17, Chapter 4, and references therein) can 
be applied in the thermal representation enabling us to study the gentle 
perturbations on the whole Weyl algebra. It is proven in ref. 18 that again 
the nonhomogeneous thermal process (~,~" A)t~Kp determines the corre- 
sponding W*-KMS structure obtained from the corresponding GNS 
representation. The important problems of constructing the perturbed 
(Euclidean-time) Green functions on the whole Weyl algebra fOr(h) and of 
whether the corresponding homogeneous process (~,),orp determines them 
and also whether the limiting W*-KMS structure on ~ ( h )  forms a 
modular structure will be treated in another paper in this series. 

4.4. The Abelian sector of the free Bose critical gas can be described 
in the Euclidean region by a certain nonergodic Gaussian generalized 
thermal process. Results complementary to those contained in Section 2 for 
the critical gas are obtained in ref. 18, where thermodynamic limits of the 
gentle perturbations on the Abelian sector also have been controlled by 
applications of the Fr6hlich-Park correlation inequalities. The most inter- 
esting result of these investigations is that nonergodicity of the limiting, 
perturbed thermal process is preserved. Whether this is connected to the 
preservation of the Bose-Einstein condensate in the interacting system 
remains to be answered. 

4.5. More general, unbounded perturbations (e.g., of polynomial 
type) will be described in an another paper of this series. ~8) Standard tools 
of constructive Euclidean quantum field theory, such as the high- (and the 
low-) temperature cluster expansions, are used to study the corresponding 
perturbations of the free thermal structure on the Abelian sector. 
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